

Applications Note: SY50103 Flyback Regulator With Primary Side CV/CC Control For Adapters and Chargers Preliminary Specification

General Description

SY50103 is a PWM controller with several features to enhance performance of Flyback converters. It integrates a 600V MOSFET to decrease physical volume. Both current and voltage regulation are achieved by primary side control technology for low cost application. To achieve higher efficiency and better EMI performance, SY50103 drives Flyback converters in the Quasi-Resonant mode.

Ordering Information

Optional Spec Code				
Ordering Number	Package type	Note		
SY50103FAC	SO8			

Features

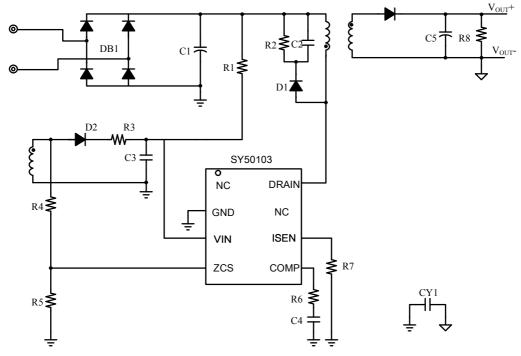
- Integrated 600V MOSFET
- Primary side CV/CC control eliminates the optocoupler
- Valley turn-on of the primary MOSFET to achieve low switching losses
- Low start up current: 15µA typical
- Maximum switching frequency limitation 120kHz
- Compact package: SO8

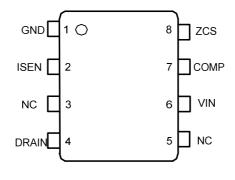
Applications

- AC/DC adapters
- Battery Chargers

Recommended operating output power				
Products 90~264Vac 176~264Vac				
SY50103 9W 13W				

Typical Applications




Figure 1. Schematic Diagram

YuCan 要她电子

AN_SY50103

Pinout (top view)

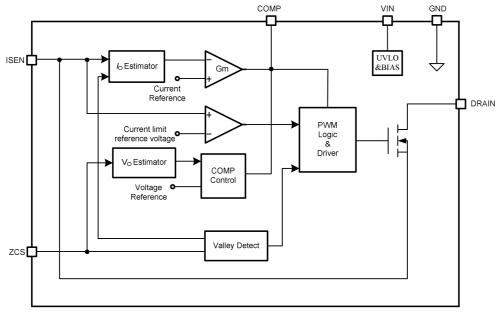
(SO8)

Top Mark: AMQxyz for SY50103FAC(device code: AMQ, x=year code, y=week code, z= lot number code)

Pin	Name	Description
1	GND	Ground pin.
2	ISEN	Current sense pin. Connect this pin to the source of the primary switch.
3	NC	
4	DRAIN	Drain of the internal power MOSFET.
5	NC	
6	VIN	Power supply pin.
7	COMP	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control
'	com	loop and to achieve fast transient response.
8	ZCS	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resistor divider and detects the inductor current zero crossing point.
Ab	solute	Maximum Ratings (Note 1)
Supp	oly Current	I _{VIN} 30mA
	.,	
ZCS		

	vie viiv viiv
DRAIN	600V
Power Dissipation, @ T _A = 25°C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8, θ JA	125°C/W
SO8, θ JC	60°C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	

Recommended Operating Conditions (Note 3)


VIN	8V~15.4V
Junction Temperature Range	40°C to 125°C

YuCan www. szyucan. com

AN_SY50103

Block Diagram

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}C \text{ unless otherwise specified)}$

$V_{IN} = 12V$ (Note 5), $T_A = 25^{\circ}C$ Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section				•		
Input voltage range	V _{VIN}		8		15.4	V
VIN turn-on threshold	V _{VIN,ON}				17.6	V
VIN turn-off threshold	V _{VIN,OFF}		6.0		7.9	V
VIN OVP voltage	V _{VIN,OVP}			V _{VIN,ON} +1		V
Start up Current	I _{ST}	V _{VIN} <v<sub>VIN,OFF</v<sub>		15		μA
Operating Current	I _{VIN}	C _L =100pF,f=15kHz		1		mA
Shunt current in OVP mode	I _{VIN,OVP}	V _{VIN} >V _{VIN,OVP}	1.6	2	2.5	mA
Error Amplifier Section						•
Internal reference voltage for output current	V _{REF}			0.42		V
Sleep mode ON threshold on COMP	V _{COMP,ON}			0.1		V
Sleep mode OFF threshold on COMP	V _{COMP,OFF}			0.15		V
Current Sense Section	•	•				•
Current limit reference voltage	V _{ISEN,MAX}			1.0		V
ZCS pin Section	• •			-		
ZCS pin OVP voltage threshold	V _{ZCS,OVP}			1.29		V
ZCS pin voltage reference	V _{ZCS,REF}			1.25		V
Integrated MOSFET Section	•	•		-		
Breakdown Voltage	V _{BV}	$V_{GS}=0V, I_{DS}=250 \mu A$	600			V
Gate Driver Section						
Gate driver voltage	V _{Gate}			V _{VIN}		V
Maximum source current	I _{SOURCE}			0.25		А
Minimum sink current	I _{SINK}			0.5		А
Max ON Time	T _{ON,MAX}	V _{COMP} =1.5V		24		μs
Min ON Time	T _{ON,MIN}			400		ns
Max OFF Time	T _{OFF,MAX}			39		μs
Min OFF Time	T _{OFF,MIN}			1		μs
Maximum switching frequency	f _{MAX}			120		kHz
Thermal Section						
Thermal Shutdown Temperature	T _{SD}			150		°C

Note 1: The recommended power is measured by 25°C temperature rise on case, in an open frame design with adequate heat sinking.

Note 2: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 3: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.

Note 4: Increase VIN pin voltage gradually higher than $V_{VIN,ON}$ voltage then turn down to 12V.

<u>SY50103</u>

Operation

SY50103 is a high performance Flyback controller with primary side control and constant current and constant voltage regulation.

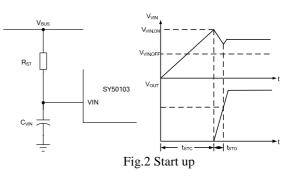
It integrates a 600V MOSFET to decrease physical volume.

The Device provides primary side control to eliminate the opto-isolators or the secondary feedback circuits, which would cut down the cost of the system.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the integrated MOSFET at voltage valley; the start up current of the device is rather small (15 μ A typically) to reduce the standby power loss further.

The device provides reliable protections such as Over Voltage Protection (OVP), Short Circuit Protection (SCP), Over Temperature Protection (OTP), etc.

SY50103 can be applied in AC/DC adapters, Battery Chargers and other consumer electronics.


SY50103 is available with SOIC8 package.

Applications Information

<u>Start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{ST} . Once V_{VIN} rises up to V_{VIN-ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Flyback transformer could supply enough energy to maintain V_{VIN} above $V_{VIN-OFF}$.

The whole start up procedure is divided into two sections shown in Fig.2. $t_{\rm STC}\,$ is the $C_{\rm VIN}$ charged up section, and $t_{\rm STO}$ is the output voltage built-up section. The start up time $t_{\rm ST}$ composes of $t_{\rm STC}$ and $t_{\rm STO}$, and usually $t_{\rm STO}$ is much smaller than $t_{\rm STC}.$

The start up resistor R_{ST} and C_{VIN} are designed by rules below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN_OVP}

$$\frac{V_{BUS}}{I_{VIN_{OVP}}} < R_{ST} < \frac{V_{BUS}}{I_{ST}} (1)$$

Where V_{BUS} is the BUS line voltage.

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{\rm VIN} = \frac{\left(\frac{V_{\rm BUS}}{R_{\rm ST}} - I_{\rm ST}\right) \times t_{\rm ST}}{V_{\rm VIN_ON}} (2)$$

(c) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Flyback transformer can not supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below $V_{VIN-OFF}$, the IC will stop working and V_{COMP} will be discharged to zero.

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for Flyback converter.

5

YuCan www. szyucan. com

The voltage across drain and source of the primary integrated MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary integrated MOSFET is at voltage valley, the MOSFET would be turned on.

Output Voltage Control

In order to achieve primary side constant voltage control, the output voltage is detected by the auxiliary winding voltage.

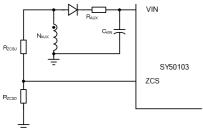
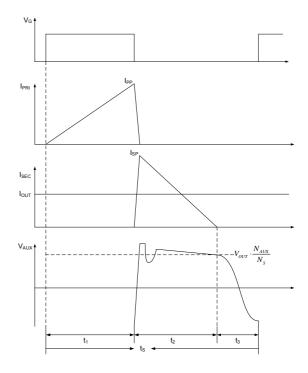


Fig.4 ZCS pin connection

As shown in Fig.5, during OFF time, the voltage across the auxiliary winding is


$$V_{AUX} = (V_{OUT} + V_{D,F}) \times \frac{N_{AUX}}{N_s}$$
(3)

 N_{AUX} is the turns of auxiliary winding; N_S is the turns of secondary winding; $V_{D,F}$ is the forward voltage of the power diode.

At the current zero-crossing point, $V_{D,F}$ is nearly zero, so V_{OUT} is proportional with V_{AUX} exactly. The voltage of this point is sampled by the IC as the feedback of output voltage. The resistor divider is designed by

$$\frac{V_{ZCS,REF}}{V_{OUT}} = \frac{R_{ZCSD}}{R_{ZCSU} + R_{ZCSD}} \times \frac{N_{AUX}}{N_{S}}$$
(4)

AN_SY50103

Where $V_{ZCS,REF}$ is the internal voltage reference.

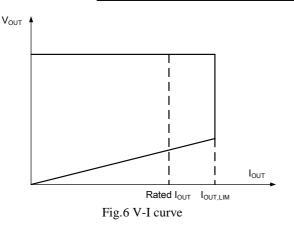
Fig.5 Auxiliary winding voltage waveforms

Output Current Control

The output current is regulated by SY50103 with primary side detection technology, the maximum output current $I_{OUT,LIM}$ can be set by

$$I_{\text{out,LIM}} = \frac{k_1 \times V_{\text{REF}} \times N_{\text{PS}}}{R_{\text{S}}} (5)$$

Where k_1 is the output current weight coefficient;; V_{REF} is the internal reference voltage; R_S is the current sense resistor.


 k_1 and V_{REF} are all internal constant parameters, $I_{OUT,LIM}$ can be programmed by N_{PS} and $R_S.$

$$\mathbf{R}_{\mathrm{S}} = \frac{\mathbf{k}_{\mathrm{1}} \times \mathbf{V}_{\mathrm{REF}} \times \mathbf{N}_{\mathrm{PS}}}{\mathbf{I}_{\mathrm{OUT}}} \tag{6}$$

When over current operation or short circuit operation happens, the output current will be limited at $I_{OUT,LIM}$. The V-I curve is shown as Fig.6.

AN_SY50103Rev.0.1 Silergy Corp. Confidential- Prepared for Customer Use Only 6

The IC provides line regulation modification function to improve line regulation performance of the output current.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage ΔV_{ISEN-C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN-C} is adjusted by the upper resistor of the divider connected to ZCS pin.

$$\Delta V_{\text{ISEN,C}} = V_{\text{BUS}} \times \frac{N_{\text{AUX}}}{N_{\text{P}}} \times \frac{1}{R_{\text{ZCSU}}} \times k_2 (7)$$

Where R_{ZCSU} is the upper resistor of the divider; k_2 is an internal constant as the modification coefficient.

The compensation is mainly related with R_{ZCSU} , larger compensation is achieved with smaller R_{ZCSU} . Normally, R_{ZCS} ranges from $100k\Omega$ ~ $1M\Omega$.

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so V_{VIN} will drop down without auxiliary winding supply. Once V_{VIN} is below $V_{VIN,OFF}$, the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

Power design

A few applications are shown as below.

Products	Input range	Output		Temperature rise
	90Vac~264Vac	9.0W	5V/1.8A	40°C
SY50103	90Vac~264Vac	9.5W	5V/1.9A	50°C
	90Vac~264Vac	10W	5V/2.0A	60℃

AN_SY50103

The test is operated in natural cooling condition at 25 $^\circ\! \mathbb C$ ambient temperature.

Power Device Design

MOSFET and DIODE

When the operation condition is with maximum input voltage and full load, the voltage stress of integrated MOSFET and secondary power diode is maximized;

$$V_{\text{MOS}_DS_MAX} = \sqrt{2} V_{\text{AC}_MAX} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D}_F}) + \Delta V_{\text{S}} (8)$$
$$V_{\text{D}_R_MAX} = \frac{\sqrt{2} V_{\text{AC}_MAX}}{N_{\text{PS}}} + V_{\text{OUT}} (9)$$

Where $V_{AC,MAX}$ is maximum input AC RMS voltage; N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the rated output voltage; V_{D-F} is the forward voltage of secondary power diode; ΔV_S is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of integrated MOSFET and power diode is maximized.

$$I_{MOS_{PK_{MAX}}} = I_{P_{PK_{MAX}}} (10)$$
$$I_{MOS_{RMS_{MAX}}} = I_{P_{RMS_{MAX}}} (11)$$
$$I_{D_{PK_{MAX}}} = N_{PS} \times I_{P_{PK_{MAX}}} (12)$$
$$I_{D_{AVG}} = I_{OUT} (13)$$

Where $I_{P-PK-MAX}$ and $I_{P-RMS-MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_M)

 N_{PS} is limited by the electrical stress of the internal power MOSFET:

AN_SY50103

$$N_{PS} \leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D_F}}$$
(14)

Where $V_{MOS,(BR)DS}$ is the breakdown voltage of the integrated MOSFET.

In Quasi-Resonant mode, each switching period cycle t_s consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in Fig.7.

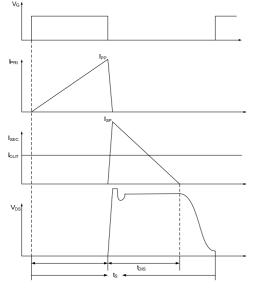


Fig.7 switching waveforms

When the operation condition is with minimum input AC RMS voltage and full load, the switching frequency is minimum frequency, the maximum peak current through integrated MOSFET and the transformer happens.

Once the minimum frequency f_{S-MIN} is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS}

$$N_{PS} \leq \frac{V_{MOS_(BR)DS} \times 90\% - \sqrt{2}V_{AC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D_F}} (15)$$

(b) Preset minimum frequency f_{S-MIN}

(c) Compute inductor L_M and maximum primary peak current $I_{P,PK,MAX}$

$$I_{P,PK,MAX} = \frac{2P_{OUT}}{\eta \times V_{DC,MIN}} + \frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D,F})} (16) + \pi \sqrt{\frac{2P_{OUT}}{\eta} \times C_{Drain} \times f_{S,MIN}}$$

$$L_{\rm m} = \frac{2P_{\rm OUT}}{\eta \times I_{\rm P, PK, MAX}^2 \times f_{\rm S, MIN}} (17)$$

Where C_{Drain} is the parasitic capacitance at drain of integrated MOSFET; η is the efficiency; P_{OUT} is rated full load power

(d) Compute current rising time t_1 and current falling time t_2

$$t_{1} = \frac{L_{M} \times I_{P,PK,MAX}}{V_{BUS}} (18)$$
$$t_{2} = \frac{L_{m} \times I_{P,PK,MAX}}{N_{PS} \times (V_{OUT} + V_{D,F})} (19)$$
$$t_{S} = \frac{1}{f_{S,MIN}} (20)$$

(e) Compute primary maximum RMS current $I_{P-RMS-MAX}$ for the transformer fabrication.

$$I_{P,RMS,MAX} = \frac{\sqrt{3}}{3} I_{P,PK,MAX} \times \sqrt{\frac{t_1}{t_s}} (21)$$

(f) Compute secondary maximum peak current $I_{S-PK-MAX}$ and RMS current $I_{S-RMS-MAX}$ for the transformer fabrication.

$$I_{S_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX} (22)$$

$I_{S,RMS,MAX} = \frac{\sqrt{3}}{3} N_{PS} \cdot I_{P,PK,MAX} \cdot \sqrt{\frac{t_2}{t_s}} (23)$

Transformer design (NP,NS,NAUX)

The design of the transformer is similar with ordinary Flyback transformer. the parameters below are necessary:

Necessary parameters	
Turns ratio	N _{PS}
Inductance	L _M
Primary maximum current	I _{P-PK-MAX}
Primary maximum RMS current	I _{P-RMS-MAX}
Secondary maximum RMS current	I _{S-RMS-MAX}

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area A_e

(**b**) Preset the maximum magnetic flux ΔB

ΔB=0.22~0.26T

(c) Compute primary turn N_P

$$N_{\rm p} = \frac{L_{\rm M} \times I_{\rm P_PK_MAX}}{\Delta B \times A_{\rm e}} (24)$$

(d) Compute secondary turn N_S

$$N_{\rm S} = \frac{N_{\rm P}}{N_{\rm PS}} (25)$$

(e) compute auxiliary turn N_{AUX}

$$N_{AUX} = N_S \times \frac{V_{VIN}}{V_{OUT}}$$
 (26)

Where V_{VIN} is the working voltage of VIN pin (10V~11V is recommended).

(f) Select an appropriate wire diameter

With IP-RMS-MAX and IS-RMS-MAX, select appropriate wire to make sure the current density ranges from 4A/mm² to $10A/mm^2$

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Input capacitor CBUS

Generally, the input capacitor C_{BUS} is selected by $C_{BUS} = 2 \sim 3\mu F / W$

Or more accurately by

$$C_{BUS} = \frac{\arcsin(1 - \frac{\Delta V_{BUS}}{\sqrt{2}V_{AC,MIN}}) + \frac{\pi}{2}}{\pi} \times \frac{P_{OUT}}{\eta} \times \frac{1}{2f_{IN}V_{AC,MIN}^2[1 - (1 - \frac{\Delta V_{BUS}}{\sqrt{2}V_{AC,MIN}})^2]}$$
(27)

Where ΔV_{BUS} is the voltage ripple of BUS line.

RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first

AN SY50103

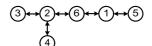
$$P_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_F}) + \Delta V_{\rm S}}{\Delta V_{\rm S}} \times \frac{L_{\rm K}}{L_{\rm M}} \times P_{\rm OUT}$$
(28)

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; V_{D-F} is the forward voltage of the power diode; ΔV_s is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; POUT is the output power.

The R_{RCD} is related with the power loss:

$$R_{RCD} = \frac{(N_{PS} \times (V_{OUT} + V_{D_{-F}}) + \Delta V_{S})^{2}}{P_{PCD}} (29)$$

The C_{RCD} is related with the voltage ripple of the snubber ΔV_{C-RCD} :


$$C_{\rm RCD} = \frac{N_{\rm PS} \times (V_{\rm OUT} + V_{\rm D_{,F}}) + \Delta V_{\rm S}}{R_{\rm RCD} f_{\rm S} \Delta V_{\rm C_{,RCD}}}$$
(30)

Layout

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.

(b) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.

(c) The connection of primary ground is recommended as:

Ground ①: ground of BUS line capacitor

- Ground 2: ground of bias supply capacitor
- Ground ③: ground node of auxiliary winding

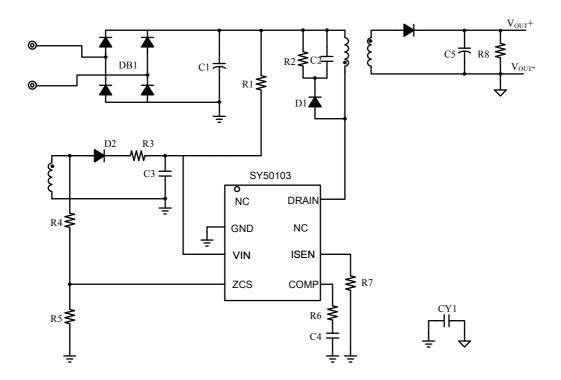
Ground ④: ground of signal trace

Ground (5): primary ground node of Y capacitor

Ground (6): ground node of current sample resistor.

(d) bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.

9



AN_SY50103

(e) Loop of 'Source pin – current sample resistor – GND pin' should be kept as small as possible.

(f) The resistor divider connected to ZCS pin is recommended to be put beside the IC.

Design Example

A design example of typical application is shown below step by step.

#1. Identify design specification

Design Specification			
V _{AC} (RMS)	90V~264V	V _{OUT}	5V
I _{OUT}	2A	η	83%

#2. Transformer design (N_{PS}, L_M)

Refer to Power Device Design

Conditions			
V _{AC,MIN}	90V	V _{AC-MAX}	264V
ΔV_{S}	80V	V _{MOS-(BR)DS}	600V
P _{OUT} (Max)	10W	$V_{D,F}$	1V
C _{Drain}	100pF	f _{S-MIN}	52kHz
ΔV_{BUS}	$40\% V_{BUS}$		

(a)Compute turns ratio N_{PS} first

$$\begin{split} N_{\text{PS}} &\leq \frac{V_{\text{MOS}_(\text{BR})\text{DS}} \times 90\% - \sqrt{2} V_{\text{AC}_\text{MAX}} - \Delta V_{\text{S}}}{V_{\text{OUT}} + V_{\text{D,F}}} \\ &= \frac{600V \times 0.9 - \sqrt{2} \times 264V - 80V}{5V + 1V} \\ &= 14.5 \end{split}$$

 N_{PS} is set to

 $N_{PS} = 13$

(**b**)f_{S,MIN} is preset

 $f_{S_{MIN}} = 52 kHz$

(c) Compute inductor L_{M} and maximum primary peak current $I_{\text{P,PK,MAX}}$

$$\begin{split} I_{P,PK,MAX} &= \frac{2P_{OUT}}{\eta \times \left(\sqrt{2}V_{AC,MIN} - \Delta V_{BUS}\right)} + \frac{2P_{OUT}}{\eta \times N_{PS} \times (V_{OUT} + V_{D,F})} + \pi \sqrt{\frac{2P_{OUT}}{\eta} \times C_{Drain} \times f_{S,MIN}} \\ &= \frac{2 \times 10W}{0.83 \times (\sqrt{2} \times 90V - 0.4 \times \sqrt{2} \times 90V)} + \frac{2 \times 10W}{0.83 \times 13 \times (5V + 1V)} + \pi \times \sqrt{\frac{2 \times 10W}{0.83} \times 100 \text{pF} \times 52 \text{KHz}} \\ &= 0.625 \text{A} \end{split}$$

$$L_{m} = \frac{2P_{OUT}}{\eta \times I_{P,PK,MAX}^{2} \times f_{S,MIN}}$$
$$= \frac{2 \times 10W}{0.83 \times (0.625A)^{2} \times 52kHz}$$
$$= 1.186mH$$

Set: L_m=1.18mH

(d) Compute current rising time t_1 and current falling time t_2

$$t_{1} = \frac{L_{M} \times I_{P,PK,MAX}}{V_{BUS}} = \frac{1.18 \text{mH} \times 0.625 \text{A}}{\sqrt{2} \times 90 \text{V}} = 5.8 \mu \text{s}$$
$$t_{2} = \frac{L_{m} \times I_{P,PK,MAX}}{N_{PS} \times (V_{OUT} + V_{D,F})} = \frac{1.18 \text{mH} \times 0.625 \text{A}}{13 \times (5 \text{V} + 1 \text{V})} = 9.46 \mu \text{s}$$
$$t_{3} = \pi \times \sqrt{L_{M} \times C_{Drain}} = \pi \times \sqrt{1.18 \text{mH} \times 100 \text{pF}} = 1.1 \mu \text{s}$$

$$t_s = t_1 + t_2 + t_3 = 5.8 \mu s + 9.46 \mu s + 1.1 \mu s = 16.36 \mu s$$

(e) Compute primary maximum RMS current $I_{P-RMS-MAX}$ for the transformer fabrication.

$$I_{P,RMS,MAX} = \frac{\sqrt{3}}{3} I_{P,PK,MAX} \times \sqrt{\frac{t_1}{t_s}} = \frac{\sqrt{3}}{3} \times 0.625 A \times \sqrt{\frac{5.8 \mu s}{16.36 \mu s}} = 0.215 A$$

(f) Compute secondary maximum peak current I_{S-PK-MAX} and RMS current I_{S-RMS-MAX} for the transformer fabrication.

$$I_{s_{PK}MAX} = N_{PS} \times I_{P_{PK}MAX} = 13 \times 0.625A = 8.125A$$

$$I_{S,RMS,MAX} = N_{PS} \times \frac{\sqrt{3}}{3} I_{P,PK,MAX} \times \sqrt{\frac{t_2}{t_s}} = 13 \times \frac{\sqrt{3}}{3} \times 0.625 A \times \sqrt{\frac{9.46 \mu s}{16.36 \mu s}} = 3.567 A$$

#3. Select secondary power diode

Refer to Power Device Design

Compute the voltage and the current stress of secondary power diode

$$V_{D_{D_{AC}MAX}} = \frac{\sqrt{2}V_{AC_MAX}}{N_{PS}} + V_{OUT} = \frac{\sqrt{2} \times 264V}{13} + 5V = 33.7V$$

 $I_{D_{PK}_{MAX}} = N_{PS} \times I_{P_{PK}_{MAX}} = 13 \times 0.485 A = 8.125 A$

 $I_{D_AVG} = 2.0A$

#4. Select the input capacitor C_{IN}

Refer to input capacitor $C_{\mbox{\scriptsize IN}}$ Design

Known conditions at this step

 $V_{AC,MIN}$ 90V
 ΔV_{BUS} 40% $V_{AC,MIN}$

$$C_{BUS} = \frac{\arcsin(1 - \frac{\Delta V_{BUS}}{\sqrt{2}V_{AC,MIN}}) + \frac{\pi}{2}}{\pi} \times \frac{P_{OUT}}{\eta} \times \frac{1}{2f_{IN}V_{AC,MIN}^2[1 - (1 - \frac{\Delta V_{BUS}}{\sqrt{2}V_{AC,MIN}})^2]}$$
$$= \frac{\arcsin(1 - \frac{0.4 \times \sqrt{2} \times 90V}{\sqrt{2} \times 90V}) + \frac{\pi}{2}}{\pi} \times \frac{10W}{0.83} \times \frac{1}{2 \times 65 \text{kHz} \times 90V^2 \times [1 - (1 - \frac{0.4 \times \sqrt{2} \times 90V}{\sqrt{2} \times 90V})^2]}$$

 $= 20.16 \mu F$

Where ΔV_{BUS} is the voltage ripple of BUS line.

#5. Set VIN pin

Refer to Start up

Conditions			
V _{BUS-MIN}	90V×1.414	V _{BUS-MAX}	264V×1.414
I _{ST}	15µA (typical)	V _{IN-ON}	16V (typical)
I _{VIN-OVP}	2mA (typical)	t _{ST}	2s (designed by user)

(a) R_{ST} is preset

$$R_{_{ST}} \! < \! \frac{V_{_{BUS}}}{I_{_{ST}}} \! = \! \frac{90V \! \times \! 1.414}{15 \mu A} \! = \! 8.48 M \Omega$$
 ,

$$R_{_{ST}} \! > \! \frac{V_{_{BUS}}}{I_{_{VIN_{O}VP}}} \! = \! \frac{264V \! \times \! 1.414}{2mA} \! = \! 186 k \Omega$$

Set R_{ST}

 $R_{st}=4M$

(b) Design C_{VIN}

$$C_{VIN} = \frac{(\frac{V_{BUS}}{R_{ST}} - I_{ST}) \times t_{ST}}{V_{VIN_{ON}}} = \frac{(\frac{90V \times 1.414}{4M\Omega} - 15\mu A) \times 2s}{16V} = 2.1\mu F$$

YuCan www.szyucan.com

Set C_{VIN}

 C_{vin} =3.3 μF

#6. Set current sense resistor to achieve ideal output current

Refer to Primary-side constant-current control

Known conditions at this step				
k ₁	0.5	N _{PS}	13	
V _{REF}	0.42V	I _{OUT,LIM}	2.4A	

The current sense resistor is

$$\begin{split} R_{S} = & \frac{k_{1} \times V_{REF} \times N_{PS}}{I_{OUT}} \\ = & \frac{0.5 \times 0.42 V \times 13}{2.4 A} \\ = & 1.138 \Omega \end{split}$$

#7. Set ZCS pin

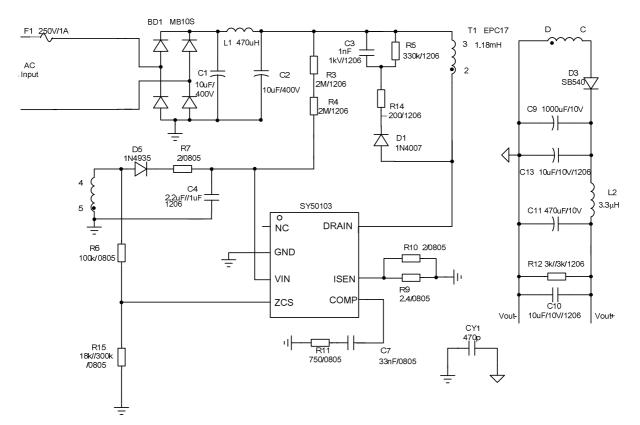
Refer to V_{OUT}

First identify R_{ZCSU} need for line regulation.

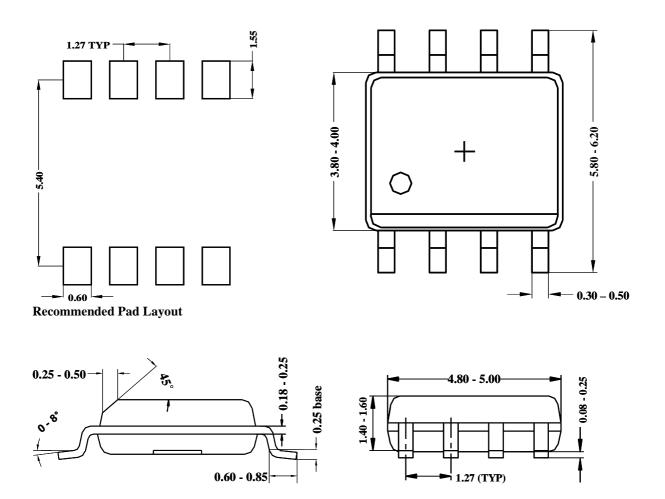
Parameters Designed				
R _{ZCSU}	100kΩ			

Then compute $R_{\ensuremath{\text{ZCSD}}}$

Conditions				
V _{OUT}	5V	V _{ZCS_REF}	1.25V	
R _{ZCSU}	100kΩ	N _S	8	
N _{AUX}	13			


$$R_{ZCSD} = \frac{R_{ZCSU}}{\frac{V_{OUT}N_{AUL}}{V_{ZCS,REF}N_S} - 1} = \frac{100K}{(\frac{5V \times 13}{1.25V \times 8} - 1)} = 18.18K$$

 $R_{_{ZCSD}}{=}18.18k\Omega$


AN_SY50103

#8. Final result

Notes: All dimensions are in millimeters. All dimensions don't include mold flash & metal burr.